DESCRIPTION OF THE FEMALE OF ACROPSOPILIO CHOMULAE
(GOODNIGHT & GOODNIGHT 1948) FROM CHIAPAS, MEXICO
(OPILIONES, CADDIDAE, ACROPSOPILIONINAE)

William A. Shear: Department of Biology, Hampden-Sydney College, Hampden-
Sydney, Virginia 23943 U.S.A.

ABSTRACT. The tiny caddid harvestman Acropsopilio chomulae (Goodnight & Goodnight 1948), from
Chiapas, Mexico, has been known only from the immature holotype. Mature females are described from
specimens taken near the type locality. The absence of spermathecae in the ovipositor makes it likely that
the species is parthenogenic.

RESUMEN. Hasta el momento, los únicos datos disponibles del pequeño opilión Acropsopilio chomulae
(Goodnight & Goodnight 1948) de Chiapas (México) proceden del estudio del holotipo, un ejemplar
inmaduro. En este trabajo se describen hembras maduras procedentes de cerca de localidad típica. La
ausencia de espermateca en el oviscapto sugiere que la especie es partenogenética.

Keywords: North America, harvestman, parthenogenesis

In my 1975 revision of the harvestman family Caddidae (Shear 1975), I was unable to
treat the interesting species Acropsopilio chomulae (Goodnight & Goodnight 1948) in de-
tail because the immature holotype was the only available specimen. Having described the
species as Caddo chomulae in 1948, Good-
night and Goodnight later (1950) mentioned
collecting numbers of mature individuals, but
when I enquired in the early 1970s, they could
not locate this material, and the present
whereabouts of these specimens remains un-
known. However, the American Museum of
Natural History (AMNH) has a small collec-
tion of this species made near the type locality
by Wilton and Jean Ivie. I take this opportu-

nity to describe these specimens.

TAXONOMY

Family Caddidae Banks 1892
Subfamily Acropsopilioninae Roewer 1923

Acropsopilio chomulae (Goodnight &
Goodnight 1948)
Figs. 1, 2

Caddo chomulae Goodnight & Goodnight 1948: 201.
Acropsopilio chomulae: Shear 1975:79.

Material examined.—MEXICO: Chiapas:
8 ♀, from 4 miles east of San Cristobal de las
Casas (92°36 W, 16°42′N), 25 August 1966,
W. & J. Ivie (AMNH).

Description of female.—Total length, 1.14
mm; width of eye tubercle, 0.42 mm. Eye tu-
bercles occupy entire propeltidium when seen
from above, projecting considerably over che-
licerae, deeply impressed in median line. Eyes
0.17 mm in diameter, slightly protruding, cir-
cular. Free thoracic tergites (meso- and meta-
peltidium) only slightly distinct when seen
from above (for general form of body, see
Shear 1975, fig. 10). Body soft, not heavily
erosor, devoid of spines or tubercles. La-
brum triangular, pointed, large. Coxae and en-
dites as in A. boopis (Crosby 1904) (Shear
1975, fig. 7), but endites of coxae II in some
specimens entirely separating endites of coxae
I from their coxae. Genital operculum large,
big, bluntly pointed. Sternum not sclero-
tized. Spiracles vestigial, closed.

Palpus (Fig. 1) longer in proportion to body
length in mature specimens than in juvenile
holotype. Palpal trochanter with one promi-
uent seta and several smaller ones. Femur 0.67
mm long, 0.10 mm wide, with characteristic
group of three seta-bearing tubercles near
base, single seta-bearing tubercle near midline
and at femoral apex on mesal side, brushlike
group of small setae on lateral side about two-
thirds from base of femur. Patella 0.34 mm
long, 0.10 mm wide; tibia 0.32 mm long, 0.10
mm wide, with 10–12 glandular setae ventrally. Tarsus 0.25 mm long, 0.10 mm wide; with small, immobile, vestigial claw, 20–24 glandular setae ventrally.

Legs relatively short and thin, leg IV much the longest. Femora I–IV 0.38, 0.57, 0.50, 0.76 mm long respectively; tibiae I–IV 0.25, 0.30, 0.34, 0.44 mm long respectively.

Ovipositor (Fig. 2) short, membranous, with two rings marked by apical transverse rows of setae, valves irregularly setose, sensillum single, apically bifurcate seta. Seminal receptacles not detected.

Color light brown, darker on abdominal dorsum, eye tubercle pale tan, eyes broadly ringed in black, palpus with femur and patella striking pure white, tibia and tarsus dark brown, legs medium tan.

DISCUSSION

As implied from an earlier description of the juvenile holotype, *A. chomulae* is a distinct species. It differs from *A. boopis* in having no spined tubercles on the palpal patella and tibia, from *A. venezuelensis* Gonzales-Sponga 1992 in having the apical spined tubercle of the palpal femur close to the distal end rather than set back about 1/3 the length of the femur, from *A. chilensis* in having the palpal tarsus shorter than the tibia, and from *A. neozealandiae* (Forster 1948) in stronger spined tubercles at the palpal femur base. In overall appearance and especially palpal morphology, *chomulae* most closely resembles *neozealandiae*.

Recently, I briefly summarized the biogeography and evolutionary relationships of the acropsopilionines (Shear 1996). Writing that paper, I was not aware of the description by González-Sponga (1992) of *Acropsopilio venezuelae*, from northern South America. This species provides a biogeographic link between *A. chilensis* Silvestri 1904 in southern South America and the northern hemisphere species *A. chomulae* and *A. boopis*. González-Sponga’s discovery, the finding of *Austropsopilio sudamericus* Shultz & Cekalovic 2003 in Chile and Argentina (Cokendolpher & Maury...
1990; Shultz & Cekalovic 2003), and the description of *Hesperopilio mainae* Shear 1996 from Western Australia (Shear 1996) remind us that much fundamental data remains to be collected concerning these minute, relictual, hard-to-find harvestmen. The trans-Pacific distribution of several of the genera makes these animals important in establishing zoogeographical connections between Australia and temperate southern South America.

Ovipositors of *Acropsopilio chomulae* were mounted temporarily on microscope slides and examined under oil immersion and Nomarski differential interference contrast, on an Olympus BX50 microscope. No spermathecae were seen, as is the case with *A. boopis*. The absence of these structures makes it likely (but not certain; see Bertani & Silva Junior 2002) that *A. chomulae* is parthenogenetic. Parthenogenesis is common in the Caddidae, but sexual species also occur, in a complex mosaic. *Caddo agilis* Banks 1892 females lack spermathecae, and only three males have ever been found among hundreds of specimens (Gruber 1974; Suzuki & Tsurusaki 1983). *Caddo pepperella* Shear 1975 may be a progenic isolate of *agilis* that arose after parthenogenesis had become established; males are unknown, spermathecae are lacking. The progenesis event may have happened at least twice, since the species is known from a small region of eastern North America and from Japan (Shear 1996). *Caddo agilis* has an Oligocene fossil record (Shear 1975) from Europe, so it is less likely that the origin of *agilis* from *pepperella* took place via peramorphosis.

Males are known for two of the three South African species of *Caddella* (Shear 1975), and for *Hesperopilio mainae* (Shear 1996).

Males have been described for *Austropsopilio fuscus* (Hickman 1957), but for no other species of the genus; females of *A. fuscus* have spermathecae. Despite the highly detailed description, Shultz and Cekalovic (2003) did not mention finding spermathecae in *A. sudamericanus*, which is known only from females.

Acropsopilio boopis males have never been collected either in North America (Shear 1975) or Japan (Suzuki 1976; Suzuki & Tsurusaki 1983), and *A. chilensis*, widespread in southern South America (Brazil, Chile, Argentina), is likewise known only from females (Maury et al. 1996; these authors evidently did not check for spermathecae). A single male is known for *A. venezuelae* González-Sponga 1992 (González-Sponga 1992), and there is always the possibility that males of the “females only” species are very short-lived, occupy a different habitat or simply have not been collected. I believe that parthenogenesis for *A. chomulae* represents the best hypothesis, though it is difficult to prove a negative—the complete absence of males. Only laboratory rearing can answer the question definitively, and the caddids, with their requirements for cool, moist conditions, are very difficult to keep alive in captivity.

A thorough comparative study of the male genitalia in the caddoids is lacking, and a remarkable range of variation in basic design is present. Most of the species for which penes have been illustrated have organs with heavily sclerotized, movable macrosetae (*Hesperopilio mainae* Shear is an exception). The spiny penes are closest in form to those of the Neopilionidae, which, like the caddoid penes, feature movable macrosetae. Neopilionids also have glandular-plumose hairs on the adult palpi (Hunt & Cokendolpher 1991).

No comparative information is available on the respiratory systems of *Acropsopilio* species, but the spiracles of *A. chomulae* are small and imperforate. One specimen was sacrificed in order to look for tracheae, and none were found. Such a small animal with its thin cuticle, living in a constantly humid environment, may be able to satisfy its respiratory needs by diffusion through the body wall.

LITERATURE CITED

Goodnight, C.J., & M.L. Goodnight. 1950. Grant No. 1219 (1950), distribution and taxonomic relationships of the phalangid fauna of Chiapas,
Manuscript received 9 September 2003, revised 24 November 2003.