Nomenclatorial changes in Triaenonychidae: *Sclerobunus parvus* Roewer is a junior synonym of *Paranonychus brunneus* (Banks), *Mutusnonychus* Suzuki is a junior synonym of *Paranonychus* Briggs, and *Kaolinonychinae* Suzuki is a junior synonym of *Paranonychinae* Briggs (Opiliones: Triaenonychidae).

WILLIAM A. SHEAR¹ & SHAHAN DERKARABETIAN²

¹Department of Biology, Hampden-Sydney College, Hampden-Sydney, Virginia USA 23943; email wshear@hsc.edu.
²Department of Biology, San Diego State University, San Diego, California USA 92182; email sdekarabetian@gmail.com.

The harvestman species *Sclerobunus parvus* was described by Roewer (1931) from the Queen Charlotte Islands, British Columbia, Canada. Some forty years later, Briggs (1971) revised the Triaenonychidae of North America, but missed including Roewer’s species, which had not been mentioned in the literature since its description. Briggs (1971) recognized two subfamilies in North America, Triaenonychinae Sørensen 1886 (Briggs attributed the subfamily name to Pocock, but according to the International Code of Zoological Nomenclature, Sørensen’s original proposal of the family name included the nominate subfamily) and Paranonychinae Briggs 1971. Paranonychinae included two new genera, *Metanonychus* Briggs 1971 and *Paranonychus* Briggs 1971. The latter genus was based on *Sclerobunus brunneus* Banks 1893, a commonly occurring species distributed from Clackamas County, Oregon, north to Atka Island, Alaska (Briggs 1971).

The second author (SD) is currently engaged in a phylogeographic study of the genus *Sclerobunus* and noted *S. parvus* in Kury’s (2003) catalog of New World Laniatores. Since the description of *S. parvus* did not seem to fit a species of *Sclerobunus* as defined by Briggs (1971), we borrowed the syntypes from the British Museum (Natural History), for which loan we thank Mrs. Janet Beccaloni. The first author (WAS) compared the specimens with the description and figures of Briggs (1971) and with specimens of *Paranonychus brunneus* from several localities in Washington State, USA. No meaningful differences could be found between the types and either the drawings and description, or the Washington specimens. Therefore we conclude that *Sclerobunus parvus* Roewer 1931 is a junior subjective synonym of *Paranonychus brunneus* (Banks 1893).

Briggs (1971) did not detect much sexual dimorphism in *P. brunneus*, but we note here that the genital operculum of males has a small, anterior, ventrally curved, triangular process, while that of the female has an anterior notch that is particularly noticeable if the operculum is gently lifted with a needle. This may be what Briggs meant by stating that the genital operculum of males “reaches the third coxae” while that of females does not, but in fact the distal border of the operculum is at the third coxae in both sexes. We were able to establish that the type series of *S. parvus* consists of three males and five females.

At the time, Roewer’s description of this species in *Sclerobunus* was entirely reasonable, since *P. brunneus* was also at that time considered a member of the genus. As Briggs (1971) pointed out, the differences between *brunneus* and other species of *Sclerobunus* are significant, and he was, in our opinion, justified in naming a new genus and new subfamily. However, we are uncertain if *Metanonychus* Briggs 1971, also included in the subfamily Paranonychinae, really belongs there or if *Metanonychus* even represents a monophyletic lineage (unpublished data). The subfamilies Paranonychinae and Triaenonychinae *sensu* Briggs (1971) are distinguished on the basis of the former having two pairs of branches on the hind claws, and the latter a single pair. However, like *Sclerobunus*, species of *Metanonychus* have a ventral tooth on the median prong, and the male genitalia are more like those of *Sclerobunus* species than they are of *Paranonychus brunneus*. *Metanonychus* might better be placed in the subfamily Sclerobuninae Dumitrescu 1976, proposed by Dumitrescu for the genera *Sclerobunus* Banks 1893, *Cytophabus* Banks 1905, and *Zuma* Goodnight & Goodnight 1942. Further analysis will be needed in order to fully understand the generic relationships. A molecular phylogenetic study and morphological analysis of male genitalia currently being conducted by the second author and collaborators includes samples from all Paranonychinae and Sclerobuninae. This analysis will also include representatives from all North American genera of Traviuntoidea *sensu* Giribet & Kury (2007) as well as representatives of most genera from Japan and Europe in order to confirm current familial and subfamilial relationships (discussed below).
The use of fine details of claw structure in triaenonychid taxonomy has been called into question by Hunt & Hickman (1993), who found a wide range of claw forms in the single genus Lomanella Pocock 1903, and concluded “that a subfamily classification of the Triaenonychidae based on claw morphology is difficult to sustain (Hunt & Hickman 1993, p. 81).” They proposed that the reduction of numbers in claw branches in the transition from the complex claws of juveniles to the simpler ones of adults represented neoteny, which could occur independently in individual species. Thus higher taxa should not be based on this character alone, but on a spectrum of characters that would represent real genealogical relationships. Obviously this is a question which requires closer examination across a broad range of triaenonychid genera.

“Claw taxonomy” was carried to an extreme by Suzuki (1975, 1976) who named two additional triaenonychid subfamilies, Kaolinonychinae Suzuki 1975 and Nippononychinae Suzuki 1975, solely on the basis of the number of branches on the hind claws of adults. In other characters, especially the male genitalia, the genera included in these subfamilies are similar to paranonychines, and indeed Suzuki (1975) included his new genus Kainonychus Suzuki 1975 in Paranonychinae, but only because of claw characters. In 1976, Suzuki described a new genus and species from Japan as Mutsunonychus fuscus, which he placed in Kaolinonychinae. From Suzuki’s excellent drawings and detailed description, there can be no doubt that Mutsunonychus Suzuki 1976 is a synonym of Paranonychus Briggs 1971. In fact, the species fuscus seems to differ from P. brunneus only in having three, rather than two, pairs of branches on the hind claws (hence the automatic placement in Kaolinonychinae). But Suzuki (1976) also illustrates specimens with three branches on one side of a claw, and two branches, or one branch, on the other side. Since the trans-Pacific distribution of harvestman genera and even species has been well-documented (i.e., Suzuki 1972, Shear 1975), even a species-level synonymy would not be unprecedented. But without examining specimens we do not establish it here.

The male genitalia of paranonychines are diagnostic: the ventral plate is simple, short, and bears two pairs of lateral setae; a stylus, dorsolateral plate, and dorsal plate are all lacking. Species of Kaolinonychinae, according to Suzuki’s (1975, 1976) illustrations, fit this pattern. Thus we also synonymize Kaolinonychinae Suzuki 1975 under Paranonychinae Briggs 1971.

Literature Cited