from the “hypothetical ancestral travunoid” in the same way as Travuniidae and a clade composed of all other taxa. Suzuki (1975b) kept this arrangement, changing only internal relations in Triaenonychidae. Hunt and Hickman (1993) called the synthetonychid claw a peltonychium, implying that it is homologous with the travuniid claw. According to a preliminary analysis (Kury, 2002), Synthetonychidae form a clade with the Southern Temperate Triaenonychidae. This implies an independent acquisition of such a complex structure as the peltonychium or, in other words, that the synthetonychium is not homologous with the peltonychium.

Main references:
- **Systematics:** Forster (1954), Martens (1986).
- **Natural history:** Forster (1954).

Travuniidae Absolon and Kratochvíl, 1932

Adriano B. Kury

Etymology: Travunia is the Latin name of the city of Trebinje, Bosnia and Herzegovina.

Characterization:
- **Size:** Small Laniatores, 1–3 mm.
- **Dorsum** (Figure 4.42a): Body convex, mostly rounded posteriorly, only slightly constricted in anterior third. Frontal border of carapace unarmed. Segments of body ill marked by incomplete grooves, mostly lacking. All areas, tergites, and sternites unarmed. Ocularium, when present, low, granular, far from the frontal border of the carapace. Eyes may be reduced and depigmented. Ninth tergite and lateral free sclerites (Figure 4.42p) present in non-European genera.
- **Venter:** Sternum wedge shaped (Figure 4.42h).
- **Chelicerae:** Basichelicerite slender, with only scarce dorsal ornamentation of tubercles. Cheliceral hands never swollen.
- **Pedipalps:** Pedipalps robust and strongly spined, femur dorsally convex, with ventral row of setiferous tubercles and mesal subapical setiferous tubercle (Figure 4.42i).
- **Legs:** Tibia and tarsus with powerful mesal and ectal setiferous tubercles. Setae inserted subdistally in sockets. Legs I–IV slender and unarmed. Claws III–IV with peltonychium (complex claw formed by central shield and many pairs of lateral branches, sometimes asymmetrical) attached to a stem at distal part of tarsus (Figures 4.42b–g). Tarsal formula: 3–6(2–3):5–6(3–4):4:4: only Travunia has such high counts as 6(3) in leg I; other genera have 3–5(2).
- **Genitalia:** Penis (Figures 4.42j–n) with musculature often reduced to basal portion of truncus (Figures 4.42j–l). Glans with sclerites fused including the stylus. Ovipositor unsegmented, four-lobed, with only scattered setae (Figure 4.42o).
Color: Color in general uniform dark yellow to pale yellow; troglobites are depigmented.

Sexual dimorphism: No secondary sexual dimorphism.

Distribution: Europe, Japan, and USA. The records for Slovenia are erroneous (Novak & Gruber, 2000).
Relationships: Branched claws are present in most Triaenonychidae, but the peltonychium as a unique complex claw would be a potential synapomorphy for the genera of Travuniidae. However, similar structures develop in many apparently unrelated Travunioida such as Synthetonychiidae (Forster, 1954), some Australian Triaenonychiidae of the genus Lomanella (Hunt & Hickman, 1993), and the Argentinean troglobite triaenonychid Picunchenops (Maury, 1988). The monophyly of Travuniidae is not corroborated by any unique structure, but even so the presence of the peltonychium could be a synapomorphy (convergent in other Travunioida). Travuniidae is most closely related to Cladonychiidae because the musculature of the penis is restricted to the base and the complex of the glans is short, with all median and dorsal components fused in a single structure. It is possible that Travuniidae is paraphyletic with respect to Cladonychiidae, because some of its genera (at least Peltonychia) appear closer to this family in genital morphology. The replacement of the peltonychium for a cladonychium could be a synapomorphy for Cladonychiidae in a scenario of a paraphyletic Travuniidae. The presence of additional opisthosomal sclerites in the genera Yuria and Speleonychia is a retention of a plesiomorphic state, shared with Pentanychiidae. This would add support to a paraphyletic Travunioida, but would need an extra ad hoc hypothesis of independent loss of those sclerites in other Travuniidae plus Cladonychiidae and in all other Laniatores.

Main references:
- Systematics: Absolon & Kratochvíl (1932a,b), Hadži (1935), Roewer (1935a), Suzuki (1975a), Martens (1980).

Triaenonychiidae Sørensen, 1886
Adriano B. Kury

Etymology: Triaenonyx, from Greek triaina (trident, three-pronged fish spear) and onyx (claw).

Characterization:
- Size: Medium-sized Laniatores; body length typically 3 to 5 mm, although some South African Triaenonychinae can be much smaller (down to 1 mm), and on the other side some Adaeinae are much larger (up to 10 mm). Legs I–IV almost always short, 4–7/6–12/4–8/6–10 mm long.
- Dorsum (Figures 4.43a–c): Dorsal scutum width increasing backward without major constriction. Mesotergum seldom clearly divided into areas by grooves; usually areas are marked by arrangement of tubercle rows. No areas fused. Armature of areas and tergites usually weak, formed by small paired acuminate spiniform tubercles. Ocularium usually present, mostly very narrow and high with unpaired armature (Figure 4.430). Ocularium lacking sometimes, and eyes are sessile, placed close together. Eyes elevated, much higher than the level of the carapace (Figure 4.44h). Anterior margin of cara-