THE PRESENCE OF THE GENUS LOXOSCELES IN MEXICO CITY

Medina Soriano, F.
Laboratório de Acarologia “Anita Hoffmann”, Facultad de Ciencias, UNAM. Av. Universidad 3000, D.F. 04510, Coyoacán, México

Recently, a wide alarm has been generated in Mexico concerning the feared Violin or Brown Spiders of the genus *Loxosceles*, because of deadly accidents reported on the media and the development of a new antiserum. Experts in the USA endemic region of the famous *Loxosceles reclusa* agree that the spider’s fame is way bigger than the real threat it represents to humans. Foreign authors have described more than thirty species of *Loxosceles* from Mexican specimens only, from which we know practically nothing. Mexico City has had some documented reports of occasionally collected specimens assumed to be introduced from other states. This is the first report of a large and well established population of a *Loxosceles* species in the urban area, which could also be the clue to find more widely distributed populations of this species first found near the coastal state of Acapulco. Studying and documenting this population, and tracking other possible sites for *Loxosceles* establishment will help determining which species are present in the city and in the future, the real level of danger for public health.

Poster, Wednesday 8th

CROSS-CONTINENT TRIAENONYCHIDAE, THE CASE OF CERATOMONTIA ROEWER, 1915 (OPILIONES, INSIDIATORES)

Mendes, A.C. & A.B. Kury

Triaenonychidae Sørensen includes about 500 described species of small-sized Laniatores and is characterized by the single claws of legs III-IV bearing at least one pair of lateral prongs. The family has a Gondwanan distribution, constituting the dominant opilionofauna in New Zealand, Madagascar and South Africa, also occurring in Australia and southern South America. Inclusion of Holarctic subfamilies is doubtful. Among the 64 genera of Triaenonychinae, two are claimed to cross continents: *Ceratomontia* Roewer and *Nuncia* Loman, both occurring in South America, the former occurring also in South Africa, the latter in New Zealand. Until now there are 22 described species of *Ceratomontia*, diagnosed mainly by the tarsal formula 2-3-3-3. This work aims to present a phylogenetic hypothesis for *Ceratomontia*, and also, *Austromontia* Lawrence and *Monomontia* Lawrence, both South African genera with male genitalia resembling those of *Ceratomontia*. A total of 38 morphological characters were coded for 13 terminal taxa. The ingroup consists of seven species of *Ceratomontia* (from South America and South Africa), three of *Austromontia* and four of *Monomontia* (type species included). The outgroup consists of two species of Trianonychinae from South America, one from South Africa and one Adaeinae from South Africa. The analysis using heuristic search algorithms resulted in 64 most parsimonious trees. The consensus hypothesis did not recover a monophyletic Ceratomontia, instead, the South African species form a clade with the *Austromontia* and *Monomontia* species. The *Ceratomontia* species from South America form a clade that is sister-group of the clade formed by the South African genera of the ingroup. The result shows that *Ceratomontia* is indeed involved in a "Gondwanan relationship", not within the genus, that is not even monophyletic, but includes also other genera. In face to the results, there are two options concerning the classification: 1) Consider all the species of the ingroup as a single genus, *Ceratomontia*, which has priority over the remaining. 2) Consider the South African species of *Ceratomontia* (which includes the type species) and *Austromontia* and *Monomontia* species as *Ceratomontia* and describe a new genus for the South American species.

Financial support: CAPES, CNPq

Oral, Wednesday 8th